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Nuclear Reprogramming by
Defined Factors: Quantity
Versus Quality

Shulamit Sebban’ and Yosef Buganim'*

The generation of induced pluripotent stem cells (iPSCs) and directly converted
cells holds great promise in regenerative medicine. However, after in-depth
studies of the murine system, we know that the current methodologies to
produce these cells are not ideal and mostly yield cells of poor quality that
might hold a risk in therapeutic applications. In this review we address the
duality found in the literature regarding the use of ‘quality’ as a criterion for the
clinic. We discuss the elements that influence reprogramming quality, and
provide evidence that safety and functionality are directly linked to cell quality.
Finally, because most of the available data come from murine systems, we
speculate about what aspects can be applied to human cells.

iPSCs and Directly Converted Cells in Regenerative Medicine

Cell and organ transplantation is the conventional medical treatment for lost/damaged cells or
tissues and for end-stage organ failure. However, the field of regenerative medicine is redefining
how transplantation occurs, by growing cells, tissues, and organs in the laboratory and
implanting them into patients [1]. One of the most attractive cell types for regenerative medicine
is embryonic stem cells (ESCs) because they are capable of long-term growth, self-renewal, and
can give rise to every cell type [2]. However, two major bottlenecks to realizing such potential are
allogenic immune rejection of ESC-derived cells by recipients and ethical issues involving the
destruction of a ‘live’ embryo.

The discovery that murine and human fibroblasts can be converted into stable and fully functional
embryonic stem-like cells, termed induced pluripotent stem cells (PSCs, see Glossary), by the
ectopic expression of key master regulators Oct4, Sox2, Kif4, and Myc (OSKM, also known as
Yamanaka factors) [3,4] has encouraged scientists to look beyond ESCs for regenerative medi-
cine, as well as to re-evaluate the terminology ‘terminally differentiated state’ and the notion of
cellular plasticity [5]. Since their discovery, researchers have attempted to directly convert various
adult cells to different cell types, by avoiding the pluripotent state, using a unique combination of cell
type-specific key master regulators [6-8]. Several medically-relevant cell types have been gener-
ated, including hematopoietic cells [9,10], different neuronal cells [11-13], cardiomyocytes [14],
hepatocytes [15,16], embryonic Sertoli cells [17], endothelial cells [18], neural crest cells [19], and
pancreatic B cells [20]. Furthermore, the first clinical trials using iIPSC technology have been
launched [21,22]. However, despite remarkable progress in characterizing the reprogramming
process and the resulting iPSCs and directly converted cells [23-27], it remains to be seen if these
converted cells are safe and of sufficiently high quality to warrant their immediate use in the clinic.

Theoretically, iPSCs and directly converted cells are ideal for regenerative medicine and for
disease modeling [28-31]. In contrast to ESCs, their use does not involve ethical issues and,
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Despite the great promise that iPSCs
and directly converted cells hold
for regenerative medicine, concerns
regarding the safety and functionality
of these cells currently hold back their
use in the clinic.

Many criteria affect the quality of the
converted cells, such as genome
integrity, complete somatic epigenetic
erasure, histone deposition, and
expression of long terminal repeats
of endogenous retroviruses.

While the quality of murine iPSCs can
best be assessed by their ability to form
‘all iPSC’ mice, this assay is not prac-
ticable for human iPSCs, thus highlight-
ing the need for other quality control
measures.

The choice of reprogramming factors
and their stoichiometry, the use of non-
integrating agents, and specific culture
conditions provide routes by which
iPSC quality may be improved.
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because they can be derived from patients, they should not be rejected by the host [32].
However, rigorous functional assays in the mouse system show that, unlike ESCs — which are
relatively uniform in their differentiation capacity — the quality of iPSCs varies widely between
different colonies [33]. Some colonies can contribute to chimeras but are unable to generate
a healthy ‘all-iPSC’ mouse using the stringent pluripotency assay, tetraploid complemen-
tation (4N), while others may differentiate to the three germ layers in vitro but do not
contribute to the embryo in vivo [34-37]. These experimental differences clearly demonstrate
a significant gap in the quality of the various iPSC colonies in mice. Furthermore, many mouse
assays such as the 4N test and chimera contribution are not applicable with human iPSCs
(hiPSCs), highlighting the need for alternative and reliable quality measures for testing
hiPSCs.

Assessing quality in direct conversion models is more problematic because many of them do not
reach a stable and complete reprogramming state [8,38,39]. While iPSCs can grow indepen-
dently of exogenous factors and are almost indistinguishable in their epigenome and tran-
scriptome to their ESC counterparts, in the vast majority of direct conversion models the
converted cells express only a fraction of the relevant markers and are dependent either fully
or partially on their transgenes (Table 1) [8,38,39]. This observation raised the possibility that a
high nuclear resetting state can be achieved only in stem cell populations. However, an
incomplete reprogramming process was also noted in the generation of neuronal stem-like
cells [40,41] and hepatic stem-like cells [42]. Taken together, these data suggest that the
currently prevailing technology to reset the somatic nucleus by a defined number of factors is not
ideal and mostly yields cells of poor quality. This is not surprising given that a normal reprogram-
ming process (i.e., the reprogramming of a sperm nucleus by an egg) involves a large number of
proteins that are present within the cytoplasm of a fertilized oocyte [43] as well as a unique
nuclear chromatin condensation and epigenetic state of the sperm that make it adequate for
early embryonic development [44]. Nevertheless, does cell quality really matter? After all, we are
not trying to clone a human being, but instead to generate safe and functional cells for
therapeutic applications.

In this review we focus on the current ability to analyze and compare the quality of murine iPSCs
and directly converted cells, their validity, and the elements that affect the reprogramming
quality. We address the duality found in the literature regarding the use of ‘quality’ as a parameter
for the clinic and provide evidence that quality is directly linked to safety, stability, and function-
ality of the cells. Finally, we touch upon the limitations in assessing the quality of human cells and
possible solutions.

Table 1. Properties of High-Quality iPSCs and Directly Converted Cell Types

Criterion iPSCs Directly Converted Cells
(Related to High-Quality Cells) (Related to Studies Described)

Transgene dependency No Yes (either fully or partially)

Activation of the entire endogenous circuitry Yes No or only partially

Functionality Fully equivalent to ESCs Partial

Show full rescue in mouse model Yes Partial

De novo mutations/copy-number variation Yes, but still debatable N/D*

‘Epigenetic memory’ Yes, very few loci Yes, many loci

Transcriptome Highly similar Partially similar

Superenhancer activation Yes N/D

&N/D, not determined.
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Glossary

Chimera contribution: an assay for
pluripotency evaluation. ESCs/iPSCs
are injected into blastocysts that are
then transferred into pseudopregnant
females. Developing embryos, pups,
and mature mice are analyzed for the
contribution of the cells. High-grade
chimeras represent high-quality
ESCs/iPSCs.

Directly converted cell: adult cell
that uses a unique combination of
cell type-specific key master
regulators to undergo a specific
nuclear reprogramming process to
acquire the identity of a different cell
type. The process avoids the
pluripotent state.

Epigenomic assembly: a process
that includes complete erasure of the
epigenomic landscape of the donor
cell followed by the acquisition of a
new epigenome, including histone
acetylation, methylation, and
chromatin organization, that is similar
to the targeted cell.

Ground state: the basal proliferative
state of ESCs, which is free of
epigenetic restriction and has minimal
requirements for extrinsic stimuli.
Cells in ground state are fully
pluripotent and can generate an
entire embryo.

Hyperdynamic chromatin state: a
state of dynamic chromatin
characterized by hypermobility of
chromatin-associated proteins in
pluripotent cells.

Induced pluripotent stem cells
(iPSCs): somatic cells that
underwent a nuclear reprogramming
process to resemble ESCs, by
introduction of a defined transcription
factor combination such as Oct4,
Sox2, KIf4, and Myc (OSKM); or
Sall4, Nanog, Esrrb, and Lin28
(SNEL).

Key master regulators: potent cell
type-specific transcription regulators
that, when highly expressed in a
parallel cell, can initiate a cellular
program that alters cell fate.
Somatic cell conversion models:
this term relates to all conversion
experiments including directly
converted cells and iPSCs.

Somatic memory: remnants of
epigenome and transcriptome marks
of the donor cells.

Teratoma assay: a teratoma is a
nonmalignant tumor comprised of
cells from all three embryonic germ-
layers. In the teratoma assay, ESCs/
iPSCs are implanted under the skin
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Elements Affecting Reprogramming Quality

Successful nuclear reprogramming depends on multiple components that together define the
quality of the resulting cells. We discuss here several aspects regarding the reprogramming
process that influence the resulting cells (Table 2). Because many of the directly converted cells
represent a partially reprogrammed state, as indicated by transcriptome analyses [38,39], we
primarily focus our attention on iPSCs, representing a relatively high degree of nuclear resetting.

Level of Reprogramming Factors

Given the pro-cancerous role of Myc in malignant transformation [45], mouse and human cells
have been reprogrammed in the absence of Myc (OSK-iPSCs) [46-48]. These mouse OSK-
iPSCs have been extensively characterized and compared to their OSKM-iPSCs counterparts.
However, depending on the method used to introduce the reprogramming factors, several
groups have reported conflicting findings. Using non-integrating plasmids that produce relatively
low levels of factors revealed that Myc is crucial for the generation of high-quality iPSCs as
measured by chimeric formation and germline transmission [49]. Application of a retroviral
system that yields intermediate levels revealed a decrease in the production of ‘all-iPSC’ mice in
the absence of Myc [50], and a third study employed a doxycycline (dox)-inducible lentiviral
system that generates a relatively high level of transgenes, and this gave a significant improve-
ment in the quality of iPSCs that were generated by OSK, in comparison to OSKM-iPSCs, using
the 4N assay [51]. High levels of reprogramming factors have been shown to rescue mouse
pluripotency-refractory cells such as late reprogramsmmable Thy1-positive cells, Nanog knockout
somatic cells, and pre-iPSCs [52-54]. Moreover, high expression of Oct4 and Kif4 combined
with lower expression of Myc and Sox2 produce a low number of iPSCs, the majority of which
generate ‘all-iPSC’ mice [55]. Because Myc is considered to be a global gene amplifier [56], it
is tempting to speculate that the addition of Myc during the conversion process using
non-integrating plasmids or retroviruses can facilitate complete reprogramming but induces
genomic instability in systems that produce high levels of reprogramming factors. Indeed, in the
dox-inducible lentiviral system, a unique chromosomal abnormality of chromosome 8 was
detected in poor-quality iPSCs [51]. Recently, a unique, but artificial, pluripotency state has

Table 2. Elements that Influence the Quality of the Reprogramming Process

Elements Affecting Reprogramming Elements Improving the Quality of Murine iPSCs Ref.

Culture conditions

Medium Knockout DMEM, 20% KSR [109]

Oxygen level Hypoxia [110]

Supplements Vitamin C (ascorbic acid) [111]
Histone deacetylase inhibitors [65]
Ascorbic acid and GSK3-p inhibitor (AGi) [73]
Inhibition of TGF-P together with activation of Wnt signaling [112]
in the presence of ascorbic acid
Protein arginine methyltransferase inhibitor AMI5 [113]
and TGF-B inhibitor A-83-01

Reprogramming factors

Levels High Oct4, high Kif4, low Sox2, low Myc [565]

Factor combination Sall4, Nanog, Esrrb, Lin28 (SNEL) [51]
Tet1, Oct4 [67]
Oct4, Sox2, Kif4 [50]
Oct4, Sox2, Kif4, Myc, Zscan4 [63]
Oct4, Sox2, Kif4, Myc, Dppa3 [64]

Cell origin Unknown

Cell

of an immune-compromised mouse
where they may proliferate and
differentiate to form a teratoma,
indicating pluripotency.

Tet proteins: a family of three
members, Tet1, Tet2, and Tet3, that
all have the capacity to convert 5-
methylcytosine (5mC) into 5-
hydroxymethylcytosine (5hmC),
leading to DNA demethylation, and
are therefore important regulators of
cellular identity.

Tetraploid complementation
assay (4N): a stringent assay in the
murine model that tests ESCs/iPSCs
quality. In this test ESCs/iPSCs are
injected into tetraploid blastocysts
generated by the fusion of two-cell
embryos, producing cells with four
sets of chromosomes (tetraploid
cells) that can generate only the
extraembryonic tissues but not the
embryo itself. High-quality ESCs/
iPSCs will integrate into the defective
tetraploid inner cell mass (ICM) and
will produce the entire mouse.
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been described that generates fuzzy pluripotent cells with limited developmental potential
following constitutive high levels of reprogramming factors [57]. Widespread loss of histone
H3 lysine 27 trimethylation (H3K27me3), representing a general opening of the chromatin
state at the beginning of the process, was followed by reacquisition of H3K27me3 and a stable
pluripotent state. These studies suggest that the use of suboptimal levels and stoichiometry
of the reprogramming factors is more prone to produce a unique or incomplete/aberrant
reprogramming process.

The Identity and Interplay Between Reprogramming Factors

Many different combinations of factors have been demonstrated to generate mouse and human
iPSCs (Table 2). Various chromatin modulators, such as Ezh2 [58], Tet1 [59], and loss of DOT1L
[60], miRNAs [61], and different combinations of lineage-specifier genes [62], have been shown
to facilitate reprogramming and to replace some or all of the Yamanaka factors [26]. These data
suggest that the pluripotency state can be achieved via multiple molecular conduits, and raises
the possibility that some pathways might be superior to others. The fact that OSKM can lead to
a DNA damage response (DDR) early in the reprogramming process suggests that factors
involved in oocyte-induced DNA repair may stabilize the somatic genome during reprogramming
and improve the quality of the resulting iPSCs. Indeed, Zscan4, in combination with OSKM, not
only reduced the DDR but also markedly promoted the efficiency of iPSC generation, enhanced
telomere lengthening as early as 3 days post-infection, and significantly increased the percent-
age of iPSC lines that gave rise to ‘all-iPSC’ mice as determined by 4N complementation [63]. In
addition, forced expression of the germ cell marker, Dppa3, together with OSKM enhances
reprogramming kinetics and generates mostly high-grade iPSCs, as evidenced by the produc-
tion of iPSC clones with intact DIk7-Dio3 imprinted locus [64], a locus that when hypermethy-
lated is associated with poor-quality iPSCs [65]. Moreover, the quality of iPSCs is dramatically
affected by the specific choice of reprogramming factors [51]. Reprogramming with OSKM
results in a high number of iPSC colonies, but the majority exhibit low developmental potential,
while reprogramming by Sall4, Nanog, Esrrb, and Lin28 (SNEL) generates a low number of iPSC
colonies that are primarily of high quality as defined by their capacity to produce healthy ‘all-
iPSC’ mice. Surprisingly, in the absence of the oncogenes Myc and Lin28, introduction of Oct4,
Sox2, Sall4, Nanog, and Esrrb (OSSNE) yielded the highest number of poor-quality iPSCs,
suggesting that the interplay between reprogramming factors is a crucial parameter of cell quality
and a determinant of successful reprogramming [51]. Given the fundamental role that Tet
proteins play in DNA methylation and during epigenetic reprogramming [59,66], the DNA
dioxygenase Tet1 can replace multiple pluripotency transcription factors and can generate
high-quality iPSCs with Oct4 alone, although with reduced efficiency [67].

Origin of Starting Cells and Culture Conditions

The ability to reset the epigenome of somatic cells is one of the major roadblocks of the
reprogramming process [68], thus major efforts have been focused on identifying small mol-
ecules and culture conditions that can aid in facilitating the reprogramming process by
modulating the epigenome of cells. The identification of two small-molecule kinase [MEK
(mitogen-activated protein kinase kinase 1) and GSK3-f (glycogen synthase kinase 3p)] inhib-
itors (‘2i", PD0325901 and CHIR99021) demonstrates the importance of defining the culture
conditions that support a ground state [69,70]. The characterization of the optimal culture
conditions [i.e., hypoxia and the addition of 20% knockout DMEM (Dulbecco's modified
Eagle medium), 20% knockout serum replacement (KSR)] and the identification of various
small molecules [i.e., ascorbic acid, a GSK3- inhibitor, and a transforming growth factor
(TGF)-B inhibitor] have been extensively reviewed elsewhere (Table 2) [23,71-73].

The selection of the starting population is also thought to be a major determinant because cells
with a shared epigenetic landscape to ESCs should reprogram more efficiently and quickly,
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which should aid in eliminating genetic mutations or epigenetic aberrations [25]. Indeed, Oct4
alone is sufficient to reprogram neuronal progenitor cells, which express high levels of Sox2 [68].
Other studies show that various starting cell populations have a higher tendency to retain a
specific signature of ‘somatic memory’, suggesting that the Yamanaka factors might have a
limited affinity for various regions in the genome, and thus some epigenetic landscapes will be
more adequate than others [74-76]. Indeed, subsets of hematopoietic progenitors are priv-
ileged, as defined by the observation that some progeny cells predominantly adopt a pluripotent
fate with the activation of an endogenous Oct4 locus after 4-5 divisions in reprogramming
conditions [77]. However, the observation that, although a large number of pluripotent genes are
shared between trophoblast stem cells (TSCs) and ESCs, such as Sox2, Sall4, Utf1, and Esrrb,
the conversion of TSCs to iPSCs is less efficient and longer than for other somatic cells [78]
challenges the concept that cells with shared epigenetic landscape will reprogram more
efficiently, suggesting that opposing pathways executed by TSC key master regulators such
as Cdx2 and EIf5 counteract the pluripotency state. In addition, three independent studies also
demonstrated an inverse correlation between reprogramming efficiency and cell quality by using
stringent pluripotency tests [51,55,59]. Thus, the current data suggest that parameters other
than reprogramming efficiency and epigenetic landscape similarity to the target cells (Table 2)
should be taken into consideration when attempting to achieve high-quality reprogrammed cells.

Association Between Reprogramming Quality, Cell Safety, and Functionality

Genomic stability and epigenomic assembly are two of the most influential parameters that
determine cell quality [33,79,80]. While complete nuclear resetting and an intact genome are
essential in yielding functional and safe cells, an aberrant epigenomic landscape or genetic
mutations might lead to unstable and dysfunctional cells that hold a high tumorigenic potential.

Linking Reprogramming Quiality to Safety

The molecular mechanisms that underlie the nuclear reprogramming process are remarkably
similar to those that are deregulated during malignant transformation [81-83]. In both cases,
abnormal expression of key master regulator/s induces oncogenic stress that leads to DNA
damage and genomic instability [84,85] and, in parallel, initiates a series of events that alter the
epigenome of the cell. Interestingly, while several studies have identified genetic and epigenetic
differences between ESCs and iPSCs, even in lines that passed the 4N complementation test
[86], others have failed to detect abnormalities that consistently distinguish iPSCs from ESCs,
when considering the mutation load and the genetic background of the starting cells [87-89].
Because every cell undergoes a unique reprogramming event that is influenced by many
stochastic elements [23], such as levels of transgenes, phase in cell cycle, transcriptional burst,
and hyperdynamic chromatin state, it is not surprising that those later studies could not
identify common aberrations among different iPSC colonies. Whole genome and epigenome
analyses at the single cell level are ultimately required to resolve this issue because acquisition of
a single de novo mutation or one aberrant epigenetic locus, in even one cell, is sufficient to impair
safety. For example, a hot-spot mutation or aberrant DNA methylation in a regulatory element or
within the coding region of an oncogene or tumor suppressor may render the cell more
susceptible to malignant transformation. Indeed, transient expression of reprogramming factors
in vivo resulted in global changes in DNA methylation in cells from various tissues that predis-
posed the mouse to tumor development, indicating that incomplete conversion or poor reprog-
ramming quality can facilitate malignancy [90]. However, unlike somatic cells, stable pluripotent
cells are presumed to have robust DNA repair pathways to ensure genome stability [91] and a
hyperdynamic chromatin state [92]. Moreover, it is important to note that a high incidence of
tumors was observed only in chimeric mice and ‘all-iPSC’ mice that were produced from iPSCs
generated by leaky or reactivated viruses [55]. Thus, the question of whether stable iPSCs hold
a higher malignant potential than ESCs is still debatable and requires further investigation
using non-integrating agents. Nevertheless, because only high-quality cells can contribute to
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high-grade chimeras and ‘all-iPSC’ mice, it is plausible to assume that their genome and
epigenome are relatively normal, and that those that are more prone to malignant transformation
are also functionally defective and thus cannot contribute to chimeras or to ‘all-iPSC’ mice.

Linking Reprogramming Quality to Functionality

In murine systems, functionality can be assessed at best using stringent assays such as
complete rescue experiments for directly converted cells or 4N test for iPSCs. However, the
vast majority of iPSCs have failed to pass the 4N test, and none of the directly converted cells
have been able to completely rescue organ failure to the same extent as their endogenous
counterparts. The first indication for the correlation between epigenetic reprogramming state
and the function of the converted cells came from the identification of a specific imprinted Dik7—
Dio3 gene cluster on chromosome 12gF1, which could discriminate between 4N-competent to
4N-incompetent iPSCs [65]. Since then, many genomic loci have been suggested to mark poor-
quality iPSCs that are distinguishable from ESCs. For example, a comparison between ‘4N-ON’
to “4N-OFF’ iPSC lines by high-throughput sequencing, core histone modifications, and DNA
methylation revealed all iPSC lines to be globally similar. The only parameter that correlated with
‘AN-OFF’ iPSC lines was loss of methylation at the imprinted locus Zrsr1 [93]. Besides loci with
aberrant methylation, multiple transcriptional signatures including extraembryonic genes [94]
and developmental genes [51] have been proposed to discriminate between fully functional and
dysfunctional cells. However, the controversy regarding epigenetic and genetic differences
found between iPSCs and ESCs raises doubts regarding the robustness of these approaches.
Thus, scientists have used other methods to identify high-quality cells (Figure 1, Key Figure).
Indeed, analysis of the deposition of histone variant H2A.X (H2A histone family, member X)
following the completion of the reprogramming process revealed that H2A.X organization is a
functional marker that could distinguish between cells with high or poor developmental potential.
ESC-specific H2A.X deposition patterns have been found to be faithfully recapitulated in iPSCs
that fully support the development of ‘all-iPSC’ animals. By contrast, iPSCs that failed to support
‘all-iPSC’ embryonic development showed aberrant H2A.X deposition and a predisposition to
extraembryonic differentiation [94]. Furthermore, two histone variants, TH2A and TH2B, which
are expressed at high levels in oocytes and contribute to the activation of the paternal genome
after fertilization, facilitate OSKM-dependent generation of iPSCs and generate iPSCs in the
absence of Myc and Sox2 [95]. These studies provide some insight regarding the role of histone
variants during the reprogramming process.

Lessons Learned From Human Cells

Because cell replacement therapy requires fully functional cells, it is of paramount importance to
distinguish high-quality cells from the entire population of induced cells. Because the 4N test is
not applicable for hiPSCs, the current methodologies to assess their quality are in vitro
differentiation, teratoma assay, transcriptional profile, and karyotyping analysis. However,
these techniques are not sufficiently stringent, and the vast majority of iPSCs pass these tests.
Thus, defining a test or a criterion that will faithfully identify high-quality cells is particularly crucial
for human cells.

Similarly to mouse cells, hiPSCs and hESCs show changes in DNA methylation. A recent study
identified a panel of 82 CpG methylation sites that could distinguish poor-quality hiPSCs from
hESCs with high accuracy [96]. In accordance, a clear somatic memory was observed showing
that lineage-specific marks emerge upon differentiation induction of hiPSCs that correlate to the
cell of origin [97]. However, paralleling studies using the mouse system, different studies found
comparable frequencies of coding mutations and loss of imprinting in human pluripotent cells
derived by either nuclear transfer or defined factors introduced by non-integrating agents [98].
These observations raise a fundamental question in the reprogramming field: is somatic memory
an intrinsic and integral part of the reprogramming process by defined factors, or is it only a
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Key Figure

Quality Control Criteria for Mouse and Human iPSCs
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Figure 1. A table comparing the quality control criteria for iPSCs and the various directly converted cell types between
mouse and human. Red indicates relevant to iPSCs, blue indicates relevant to directly converted cells, and black indicates
relevant for both. The quality control logo indicates a stringent parameter. Abbreviations: H2A.X, H2A histone family,
member X; iPSCs, induced pluripotent stem cells; N/D, not determined; SCID, severe combined immunodeficiency.

reflection of a suboptimal reprogramming system that generates incomplete reprogrammable
cells?

In support of the importance of histones as major players in the reprogramming process and
markers for high-quality iPSCs, the histone-remodeling chaperone ASF1A was found to be
required to achieve hiPSCs. ASF1A is specifically enriched in metaphase Il (MIl) of human
oocytes and during reprogramming of human adult dermal fibroblasts (hADFs) to hiPSCs.
Ectopic expression of ASF1A and OCT4 alone in hADFs exposed to the oocyte-specific
paracrine growth factor GDF9 reprogrammed hADFs into pluripotent cells [99]. Moreover,
seven of 40 hiPSC clones tested were found to retain a significant number of undifferentiated
cells after neural differentiation, and these formed teratomas when transplanted into mouse
brains [100]. These differentiation-defective hiPSC clones were marked by higher expression
levels of long terminal repeats of specific human endogenous retroviruses (HERVs) [100].

The dynamic regulation of HERVs is important for proper reprogramming and differentiation

potential. Aberrant expression of the long terminal repeats of HERV type-H (LTR7s), or lincRNA-
RoR, a HERV-H-driven long noncoding RNA, early in reprogramming markedly reduced
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reprogramming quality, as measured by iPSC colony number and differentiation capacity [101].
In accordance, HERVH, a primate-specific endogenous retrovirus, have been identified within a
subpopulation of hESCs and hiPSCs with characteristics similar to those of the mouse naive
pluripotent cells [102]. These latter studies emphasize the need for other measures to assess
quality in human cells (Figure 1).

Concluding Remarks

Quality control is defined as a procedure intended to ensure that a manufactured product
adheres to a defined set of quality criteria and meets specific requirements. Two of the most
crucial criteria for cells to be used in the clinic are safety and functionality. The vast majority of
iPSCs and directly converted cells do not meet these criteria, and the fact that a robust and
reliable predictor for high-quality cells has not yet been found suggests that converted cells
currently hold high risk when considered for therapeutic applications.

Stringent pluripotency tests are the best way to assess the functionality and safety of cells;
however, these assays are currently not applicable for human cells. Recently, a major progres-
sion in stem cell technology has allowed the conversion and derivation of human ESCs with
some naive characteristics [103-105]. In addition, a new embryonic stem-cell type with unique
spatial characteristics, designated region-selective pluripotent stem cells (rsPSCs), was isolated
from mouse embryos and primate pluripotent stem cells, including humans [106]. These cells
might hold the potential of generating interspecific chimera that could be employed as a stringent
developmental test which would be useful in assessing the quality of human pluripotent cells.

Abnormal chromatin resetting and genomic instability are common features in reprogramming
with OSKM, but the fact that mutual genetic or epigenetic aberrations have not been found
between multiple systems suggests that numerous elements affect the quality of the resulting
cells following a reprogramming process. Therefore, other approaches to measure quality of
hiPSCs must be developed. Some encouraging approaches to consider are faithful histone-
remodeling deposition and expression levels of long terminal repeats of specific HERVs.

There are three main approaches [i.e., somatic cell nuclear transfer (SCNT), cell fusion, and
introduction of defined transcription factors] to reprogramming a somatic nucleus. These
approaches differ in their technical difficulty, speed of reprogramming, efficiency of inducing
pluripotency, and cell yield [107]. One of the most intriguing questions in the reprogramming field
is how the oocyte can reprogram a somatic cell in less than 3 days while retaining an intact
genome and epigenome. It is believed that a complex reprogramming protein interactome and
a robust and efficient DNA repair system are responsible for this intact reprogramming event.
Therefore, investigating unfertilized MIl oocytes as a means to understand the molecular
pathways governing somatic cell reprogramming is one, albeit daunting, way to determine
the important factors and conditions necessary to reprogram a somatic nucleus. Another way to
improve the current protocols is by using elements that reduce the risk of genomic instability and
at the same time aid in resetting the epigenome. Using non-integrating agents [108] to produce
iPSCs and directly converted cells in conjunction with a unique combination of small molecules
that facilitate nuclear resetting [71,72] might yield high-quality cells. The selection of the
reprogramming factor combination is an issue that should receive more attention from the
stem cell community because the interplay between reprogrammming factors is essential for
proper reprogramming events. Yamanaka factors generate iPSCs relatively efficiently, but tend
to ‘leave’ somatic memory and yield a high number of poor-quality cells. Other combinations of
factors produce better-quality iPSCs [51,63,67] but with low efficiency. Because one high-
quality iPSC colony is sufficient to perform all therapeutic applications, generating a low number
of colonies with better quality may be more beneficial for the clinic. Two notions might explain
why low efficiency is associated with high-quality cells. First, high levels of Myc or a specific
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Outstanding Questions

Stringent pluripotency tests are defi-
nitely the best way to assess the func-
tionality and safety of iPSCs. Major
progress in stem cell technology has
recently allowed conversion and deri-
vation of human ESCs with some naive
characteristics. In addition, a new
stem-cell type with unique spatial char-
acteristics, designated region-selective
pluripotent stem cells (rsPSCs), was
obtained from mouse embryos and pri-
mate pluripotent stem cells, including
humans. Can these cells serve as a
platform for the generation of interspe-
cific chimera that can be used as a
stringent developmental test?

Two of the most crucial criteria for cells
to be used in the clinic are safety and
functionality. Because these criteria are
highly linked, are they sufficient to
define high-quality cells?

In contrast to iPSCs that can grow
independently of exogenous factors,
and are aimost indistinguishable in their
epigenome, transcriptome, and func-
tion to their ESC counterparts, in the
vast majority of cases of the direct con-
version models the converted cells
express only a fraction of the relevant
markers and are dependent either fully
or partially on their transgenes. This
raises the question: can a high degree
of nuclear reprogramming be attained
in cells undergoing reprogramming to
non-pluripotent cells?

Do stable and integration-free iPSCs
hold higher potential for malignancy
than ESCs?

Is somatic memory an intrinsic and
integral part of the reprogramming
process, or is it only a reflection of a
suboptimal  reprogramming  system
that generates incompletely repro-
grammable cells?
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interplay between the reprogramming factors induces rapid conversion of cells, but ‘leaves’
many genetic and epigenetic mistakes in a large number of cells. By contrast, combinations of
factors without Myc, or with a specifically accurate stoichiometry, tend to retain a relatively
normal genome and epigenome but the reprogrammming process is longer and complete
reprogramming can be attained only in a small number of cells. Second, these low-efficiency
combinations of factors can target only a small fraction of elite cells within the starting cell
population that is more susceptible and adequate to reprogramming.

In summary, iPSCs and directly converted cells hold great promise in the clinic for transplantation
therapy, but the quality of the converted cells is still a major roadblock for clinical applications
(see Outstanding Questions). Thus, major efforts should be focused on defining alternative and
stringent quality-control measures, such as histone variant deposition analysis, as well as on the
identification of ideal reprogramming factor combinations, culture conditions, starting cell
population, and small molecules that will allow the production of high-quality cells. Understand-
ing the elements that affect the reprogramming process will bring us closer to the ultimate goal;
the production of high-quality iPSCs and directly converted cells.
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